These functions are for small data processing tasks.
remove_right_empty_cols()
This function removes all empty columns on the right of a data set. This function is useful when you import a file and R adds empty columns to the right of the actual data. This function won’t remove empty columns on the left or in the middle of the data set.
it will remove empty columns on the right…
This data has two empty columns on the right:
data <- data.frame(
col1 = sample(1:100, 100, replace = T),
col2 = NA,
col3 = runif(100),
col4 = sample(c("blue", "green", "yellow", "orange"), 100, replace = T),
col5 = NA,
col6 = NA
)
head(data)
#> col1 col2 col3 col4 col5 col6
#> 1 45 NA 0.2485387 blue NA NA
#> 2 23 NA 0.4028812 yellow NA NA
#> 3 76 NA 0.7696302 yellow NA NA
#> 4 63 NA 0.1194854 yellow NA NA
#> 5 47 NA 0.1946950 blue NA NA
#> 6 31 NA 0.1645692 blue NA NA
After passing it through remove_right_empty_cols()
, the
two empty columns on the right (col5
and col6
have been dropped):
head(remove_right_empty_cols(data))
#> col1 col2 col3 col4
#> 1 45 NA 0.2485387 blue
#> 2 23 NA 0.4028812 yellow
#> 3 76 NA 0.7696302 yellow
#> 4 63 NA 0.1194854 yellow
#> 5 47 NA 0.1946950 blue
#> 6 31 NA 0.1645692 blue
… and only on the right.
If you accidentally run this function on a data set that doesn’t have any empty columns on the right, the data set will not change. The rightmost variable in this data set has information in it:
data <- data.frame(
col1 = sample(1:100, 100, replace = T),
col2 = NA,
col3 = runif(100),
col4 = NA,
col5 = NA,
col6 = sample(c("blue", "green", "yellow", "orange"), 100, replace = T)
)
head(data)
#> col1 col2 col3 col4 col5 col6
#> 1 37 NA 0.8912849 NA NA blue
#> 2 16 NA 0.5880786 NA NA blue
#> 3 51 NA 0.6332316 NA NA blue
#> 4 100 NA 0.2595095 NA NA blue
#> 5 33 NA 0.3182127 NA NA blue
#> 6 29 NA 0.3392539 NA NA orange
In this example col6
has data in it, so no variables are
dropped from the data set.
head(remove_right_empty_cols(data))
#> col1 col2 col3 col4 col5 col6
#> 1 37 NA 0.8912849 NA NA blue
#> 2 16 NA 0.5880786 NA NA blue
#> 3 51 NA 0.6332316 NA NA blue
#> 4 100 NA 0.2595095 NA NA blue
#> 5 33 NA 0.3182127 NA NA blue
#> 6 29 NA 0.3392539 NA NA orange